Lemma 13.20.1. Let \mathcal{A} be an abelian category. Let I \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}) be an injective object. Let I^\bullet be a bounded below complex of injectives in \mathcal{A}.
I^\bullet computes RF relative to \text{Qis}^{+}(\mathcal{A}) for any exact functor F : K^{+}(\mathcal{A}) \to \mathcal{D} into any triangulated category \mathcal{D}.
I is right acyclic for any additive functor F : \mathcal{A} \to \mathcal{B} into any abelian category \mathcal{B}.
Comments (2)
Comment #2336 by Keenan Kidwell on
Comment #2407 by Johan on