Lemma 8.6.7. Let $\mathcal{C}$ be a site. Let $\mathcal{S}, \mathcal{T}$ be stacks in groupoids over $\mathcal{C}$ and let $\mathcal{R}$ be a stack in setoids over $\mathcal{C}$. Let $f : \mathcal{T} \to \mathcal{S}$ and $g : \mathcal{R} \to \mathcal{S}$ be $1$-morphisms. If $f$ is faithful, then the $2$-fibre product
is a stack in setoids over $\mathcal{C}$.
Comments (0)