Lemma 7.34.3. Let $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ be a morphism of topoi. Let $q : \mathop{\mathit{Sh}}\nolimits (pt) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D})$ be a point. Then $p = f \circ q$ is a point of the topos $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ and we have a canonical identification

for any sheaf $\mathcal{F}$ on $\mathcal{C}$.

## Comments (0)