Lemma 7.34.3. Let f : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) be a morphism of topoi. Let q : \mathop{\mathit{Sh}}\nolimits (pt) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) be a point. Then p = f \circ q is a point of the topos \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) and we have a canonical identification
for any sheaf \mathcal{F} on \mathcal{C}.
Comments (0)