Lemma 109.33.3. Let $K$ be a field. Let $C_ i$, $i = 1, \ldots , n$ be smooth, projective, geometrically irreducible curves over $K$. Let $P_ i \in C_ i(K)$ be a rational point and let $Q_ i \in C_ i$ be a point such that $[\kappa (Q_ i) : K] = 2$. Then $[P_1 \times \ldots \times P_ n]$ is nonzero in $\mathop{\mathrm{CH}}\nolimits _0(U_1 \times _ K \ldots \times _ K U_ n)$ where $U_ i = C_ i \setminus \{ Q_ i\} $.

**Proof.**
There is a degree map $\deg : \mathop{\mathrm{CH}}\nolimits _0(C_1 \times _ K \ldots \times _ K C_ n) \to \mathbf{Z}$ Because each $Q_ i$ has degree $2$ over $K$ we see that any zero cycle supported on the “boundary”

has degree divisible by $2$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)