Lemma 15.28.5. Let $R$ be a ring. Let $\varphi : E \to R$ be an $R$-module map. Let $e \in E$ with image $f = \varphi (e)$ in $R$. Then
\[ f = de + ed \]
as endomorphisms of $K_\bullet (\varphi )$.
Lemma 15.28.5. Let $R$ be a ring. Let $\varphi : E \to R$ be an $R$-module map. Let $e \in E$ with image $f = \varphi (e)$ in $R$. Then
as endomorphisms of $K_\bullet (\varphi )$.
Proof. This is true because $d(ea) = d(e)a - ed(a) = fa - ed(a)$. $\square$
Comments (0)
There are also: