Lemma 13.19.11. Let $\mathcal{A}$ be an abelian category. Let $\beta : P^\bullet \to L^\bullet $ and $\alpha : E^\bullet \to L^\bullet $ be maps of complexes. Let $n \in \mathbf{Z}$. Assume
$P^\bullet $ is a bounded complex of projectives and $P^ i = 0$ for $i < n$,
$H^ i(\alpha )$ is an isomorphism for $i > n$ and surjective for $i = n$.
Then there exists a map of complexes $\gamma : P^\bullet \to E^\bullet $ such that $\alpha \circ \gamma $ and $\beta $ are homotopic.
Comments (0)