Lemma 15.59.12. Let $R$ be a ring. Let $\alpha : P^\bullet \to Q^\bullet$ be a quasi-isomorphism of K-flat complexes of $R$-modules. For every complex $L^\bullet$ of $R$-modules the induced map

$\text{Tot}(\text{id}_ L \otimes \alpha ) : \text{Tot}(L^\bullet \otimes _ R P^\bullet ) \longrightarrow \text{Tot}(L^\bullet \otimes _ R Q^\bullet )$

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism $K^\bullet \to L^\bullet$ with $K^\bullet$ a K-flat complex, see Lemma 15.59.10. Consider the commutative diagram

$\xymatrix{ \text{Tot}(K^\bullet \otimes _ R P^\bullet ) \ar[r] \ar[d] & \text{Tot}(K^\bullet \otimes _ R Q^\bullet ) \ar[d] \\ \text{Tot}(L^\bullet \otimes _ R P^\bullet ) \ar[r] & \text{Tot}(L^\bullet \otimes _ R Q^\bullet ) }$

The result follows as by Lemma 15.59.2 the vertical arrows and the top horizontal arrow are quasi-isomorphisms. $\square$

There are also:

• 4 comment(s) on Section 15.59: Derived tensor product

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).