Lemma 15.81.5. Let $R \to A$ be a finite type ring map. Let $M$ be an $A$-module finitely presented relative to $R$. For any ring map $R \to R'$ the $A \otimes _ R R'$-module
is finitely presented relative to $R'$.
Lemma 15.81.5. Let $R \to A$ be a finite type ring map. Let $M$ be an $A$-module finitely presented relative to $R$. For any ring map $R \to R'$ the $A \otimes _ R R'$-module
is finitely presented relative to $R'$.
Proof. Choose a surjection $R[x_1, \ldots , x_ n] \to A$. Choose a presentation
Then
is a presentation of the base change and we win. $\square$
Comments (0)