Lemma 15.80.7. Let $R \to A \to B$ be finite type ring maps. Let $M$ be a $B$-module. If $M$ is finitely presented relative to $A$ and $A$ is of finite presentation over $R$, then $M$ is finitely presented relative to $R$.
Proof. Choose a surjection $A[x_1, \ldots , x_ n] \to B$. Choose a presentation
given by a matrix $(h_{ij})$. Choose a presentation
Choose $h'_{ij} \in R[y_1, \ldots , y_ m, x_1, \ldots , x_ n]$ mapping to $h_{ij}$. Then we obtain the presentation
where the $t \times (s + tu)$-matrix is given by a first $t \times s$ block consisting of $h'_{ij}$ followed by $u$ blocks of size $t \times t$ given by $g_ iI_ t$, $i = 1, \ldots , u$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)