Processing math: 100%

The Stacks project

Lemma 15.81.7. Let R \to A \to B be finite type ring maps. Let M be a B-module. If M is finitely presented relative to A and A is of finite presentation over R, then M is finitely presented relative to R.

Proof. Choose a surjection A[x_1, \ldots , x_ n] \to B. Choose a presentation

A[x_1, \ldots , x_ n]^{\oplus s} \to A[x_1, \ldots , x_ n]^{\oplus t} \to M \to 0

given by a matrix (h_{ij}). Choose a presentation

A = R[y_1, \ldots , y_ m]/(g_1, \ldots , g_ u).

Choose h'_{ij} \in R[y_1, \ldots , y_ m, x_1, \ldots , x_ n] mapping to h_{ij}. Then we obtain the presentation

R[y_1, \ldots , y_ m, x_1, \ldots , x_ n]^{\oplus s + tu} \to R[y_1, \ldots , y_ m, x_1, \ldots , x_ n]^{\oplus t} \to M \to 0

where the t \times (s + tu)-matrix is given by a first t \times s block consisting of h'_{ij} followed by u blocks of size t \times t given by g_ iI_ t, i = 1, \ldots , u. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.