Lemma 15.81.1. Let $R$ be a ring. Let $K^\bullet $ be a complex of $R$-modules. Consider the $R$-algebra map $R[x] \to R$ which maps $x$ to zero. Then

in $D(R)$.

Lemma 15.81.1. Let $R$ be a ring. Let $K^\bullet $ be a complex of $R$-modules. Consider the $R$-algebra map $R[x] \to R$ which maps $x$ to zero. Then

\[ K^\bullet \otimes _{R[x]}^{\mathbf{L}} R \cong K^\bullet \oplus K^\bullet [1] \]

in $D(R)$.

**Proof.**
Choose a K-flat resolution $P^\bullet \to K^\bullet $ over $R$ such that $P^ n$ is a flat $R$-module for all $n$, see Lemma 15.59.10. Then $P^\bullet \otimes _ R R[x]$ is a K-flat complex of $R[x]$-modules whose terms are flat $R[x]$-modules, see Lemma 15.59.3 and Algebra, Lemma 10.39.7. In particular $x : P^ n \otimes _ R R[x] \to P^ n \otimes _ R R[x]$ is injective with cokernel isomorphic to $P^ n$. Thus

\[ P^\bullet \otimes _ R R[x] \xrightarrow {x} P^\bullet \otimes _ R R[x] \]

is a double complex of $R[x]$-modules whose associated total complex is quasi-isomorphic to $P^\bullet $ and hence $K^\bullet $. Moreover, this associated total complex is a K-flat complex of $R[x]$-modules for example by Lemma 15.59.4 or by Lemma 15.59.5. Hence

\begin{align*} K^\bullet \otimes _{R[x]}^{\mathbf{L}} R & \cong \text{Tot}(P^\bullet \otimes _ R R[x] \xrightarrow {x} P^\bullet \otimes _ R R[x]) \otimes _{R[x]} R = \text{Tot}(P^\bullet \xrightarrow {0} P^\bullet ) \\ & = P^\bullet \oplus P^\bullet [1] \cong K^\bullet \oplus K^\bullet [1] \end{align*}

as desired. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)