Definition 15.81.4. Let $R \to A$ be a finite type ring map. Let $K^\bullet $ be a complex of $A$-modules. Let $M$ be an $A$-module. Let $m \in \mathbf{Z}$.
We say $K^\bullet $ is $m$-pseudo-coherent relative to $R$ if the equivalent conditions of Lemma 15.81.3 hold.
We say $K^\bullet $ is pseudo-coherent relative to $R$ if $K^\bullet $ is $m$-pseudo-coherent relative to $R$ for all $m \in \mathbf{Z}$.
We say $M$ is $m$-pseudo-coherent relative to $R$ if $M[0]$ is $m$-pseudo-coherent relative to $R$.
We say $M$ is pseudo-coherent relative to $R$ if $M[0]$ is pseudo-coherent relative to $R$.
Comments (0)