Definition 22.3.4. Let $R$ be a ring. Let $(A, \text{d})$, $(B, \text{d})$ be differential graded algebras over $R$. The *tensor product differential graded algebra* of $A$ and $B$ is the algebra $A \otimes _ R B$ with multiplication defined by

endowed with differential $\text{d}$ defined by the rule $\text{d}(a \otimes b) = \text{d}(a) \otimes b + (-1)^ m a \otimes \text{d}(b)$ where $m = \deg (a)$.

## Comments (0)