Lemma 15.64.17. Let $R$ be a Noetherian ring. Then
A complex of $R$-modules $K^\bullet $ is $m$-pseudo-coherent if and only if $K^\bullet \in D^{-}(R)$ and $H^ i(K^\bullet )$ is a finite $R$-module for $i \geq m$.
A complex of $R$-modules $K^\bullet $ is pseudo-coherent if and only if $K^\bullet \in D^{-}(R)$ and $H^ i(K^\bullet )$ is a finite $R$-module for all $i$.
An $R$-module is pseudo-coherent if and only if it is finite.
Comments (0)
There are also: