The Stacks project

Lemma 15.66.13. Let $A \to B$ be a ring map. Let $a, b \in \mathbf{Z}$. Let $K^\bullet $ be a complex of $A$-modules with tor amplitude in $[a, b]$. Then $K^\bullet \otimes _ A^{\mathbf{L}} B$ as a complex of $B$-modules has tor amplitude in $[a, b]$.

Proof. By Lemma 15.66.3 we can find a quasi-isomorphism $E^\bullet \to K^\bullet $ where $E^\bullet $ is a complex of flat $A$-modules with $E^ i = 0$ for $i \not\in [a, b]$. Then $E^\bullet \otimes _ A B$ computes $K^\bullet \otimes _ A ^{\mathbf{L}} B$ by construction and each $E^ i \otimes _ A B$ is a flat $B$-module by Algebra, Lemma 10.39.7. Hence we conclude by Lemma 15.66.3. $\square$


Comments (1)

Comment #8788 by Shubhankar Sahai on

I am sorry if this is my misunderstanding, but perhaps it would be nice to have a slogan here 'tor amplitude is stable under base change'

There are also:

  • 2 comment(s) on Section 15.66: Tor dimension

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 066L. Beware of the difference between the letter 'O' and the digit '0'.