The Stacks project

Lemma 15.74.7. Let $R$ be a ring. If $K^\bullet \in D^ b(R)$ and all its cohomology modules are perfect, then $K^\bullet $ is perfect.

Proof. Follows by induction on the length of the finite complex: use Lemma 15.74.4 and the canonical truncations. $\square$


Comments (2)

Comment #95 by Sergei on

Why is not the complex (so with trivial differential) not a counterexample to Lemma 45.7 (in More Algebra) ?

Comment #96 by Johan on

Fixed. Thanks!

There are also:

  • 7 comment(s) on Section 15.74: Perfect complexes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 066U. Beware of the difference between the letter 'O' and the digit '0'.