Lemma 15.66.17. Let $R$ be a ring. Let $a, b \in \mathbf{Z}$. Let $K^\bullet$ be a complex of $R$-modules. Let $R \to R'$ be a faithfully flat ring map. If the complex $K^\bullet \otimes _ R R'$ has tor amplitude in $[a, b]$, then $K^\bullet$ has tor amplitude in $[a, b]$.

Proof. Let $M$ be an $R$-module. Since $R \to R'$ is flat we see that

$(M \otimes _ R^{\mathbf{L}} K^\bullet ) \otimes _ R R' = ((M \otimes _ R R') \otimes _{R'}^{\mathbf{L}} (K^\bullet \otimes _ R R')$

and taking cohomology commutes with tensoring with $R'$. Hence $\text{Tor}_ i^ R(M, K^\bullet ) \otimes _ R R' = \text{Tor}_ i^{R'}(M \otimes _ R R', K^\bullet \otimes _ R R')$. Since $R \to R'$ is faithfully flat, the vanishing of $\text{Tor}_ i^{R'}(M \otimes _ R R', K^\bullet \otimes _ R R')$ for $i \not\in [a, b]$ implies the same thing for $\text{Tor}_ i^ R(M, K^\bullet )$. $\square$

Comment #6692 by Kentaro Inoue on

There is a typo in the proof of lemma 068s. "Hence $Tor^{R}_{i}(M, K)$ ..." should be corrected to "Hence $Tor^{R}_{i}(M, K)\otimes R'$...".

There are also:

• 2 comment(s) on Section 15.66: Tor dimension

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).