The Stacks project

Lemma 15.66.17. Let $R$ be a ring. Let $a, b \in \mathbf{Z}$. Let $K^\bullet $ be a complex of $R$-modules. Let $R \to R'$ be a faithfully flat ring map. If the complex $K^\bullet \otimes _ R R'$ has tor amplitude in $[a, b]$, then $K^\bullet $ has tor amplitude in $[a, b]$.

Proof. Let $M$ be an $R$-module. Since $R \to R'$ is flat we see that

\[ (M \otimes _ R^{\mathbf{L}} K^\bullet ) \otimes _ R R' = ((M \otimes _ R R') \otimes _{R'}^{\mathbf{L}} (K^\bullet \otimes _ R R') \]

and taking cohomology commutes with tensoring with $R'$. Hence $\text{Tor}_ i^ R(M, K^\bullet ) \otimes _ R R' = \text{Tor}_ i^{R'}(M \otimes _ R R', K^\bullet \otimes _ R R')$. Since $R \to R'$ is faithfully flat, the vanishing of $\text{Tor}_ i^{R'}(M \otimes _ R R', K^\bullet \otimes _ R R')$ for $i \not\in [a, b]$ implies the same thing for $\text{Tor}_ i^ R(M, K^\bullet )$. $\square$

Comments (2)

Comment #6692 by Kentaro Inoue on

There is a typo in the proof of lemma 068s. "Hence ..." should be corrected to "Hence ...".

There are also:

  • 2 comment(s) on Section 15.66: Tor dimension

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 068S. Beware of the difference between the letter 'O' and the digit '0'.