Lemma 10.138.11. Let $A \to B \to C$ be ring maps. Assume $A \to C$ is surjective (so also $B \to C$ is) and $A \to B$ formally smooth. Denote $I = \mathop{\mathrm{Ker}}(A \to C)$ and $J = \mathop{\mathrm{Ker}}(B \to C)$. Then the sequence
of Lemma 10.134.7 is split exact.
Comments (0)
There are also: