Definition 97.8.1. Let $S$ be a scheme. Let $F : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of stacks in groupoids over $(\mathit{Sch}/S)_{fppf}$. We say that $F$ is *algebraic* if for every scheme $T$ and every object $\xi $ of $\mathcal{Y}$ over $T$ the $2$-fibre product

is an algebraic stack over $S$.

## Comments (0)