Lemma 97.6.1. Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Z} \to \mathcal{Y}$ be $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. If $p : \mathcal{X} \to \mathcal{Y}$ is formally smooth on objects, then so is the base change $p' : \mathcal{X} \times _\mathcal {Y} \mathcal{Z} \to \mathcal{Z}$ of $p$ by $q$.
Proof. This is formal. Let $U \subset U'$ be a first order thickening of affine schemes over $S$, let $z'$ be an object of $\mathcal{Z}$ over $U'$, let $w$ be an object of $\mathcal{X} \times _\mathcal {Y} \mathcal{Z}$ over $U$, and let $\delta : p'(w) \to z'|_ U$ be an isomorphism. We may write $w = (U, x, z, \alpha )$ for some object $x$ of $\mathcal{X}$ over $U$ and object $z$ of $\mathcal{Z}$ over $U$ and isomorphism $\alpha : p(x) \to q(z)$. Note that $p'(w) = z$ hence $\delta : z \to z|_ U$. Set $y' = q(z')$ and $\gamma = q(\delta ) \circ \alpha : p(x) \to y'|_ U$. As $p$ is formally smooth on objects there exists an object $x'$ of $\mathcal{X}$ over $U'$ as well as isomorphisms $\beta : x'|_ U \to x$ and $\gamma ' : p(x') \to y'$ such that (97.6.0.1) commutes. Then we consider the object $w = (U', x', z', \gamma ')$ of $\mathcal{X} \times _\mathcal {Y} \mathcal{Z}$ over $U'$ and define isomorphisms
and
These combine to give a solution to the problem. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)