The Stacks project

Lemma 96.15.3. Let $F : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of stacks in groupoids over $(\mathit{Sch}/S)_{fppf}$. Assume $F$ is representable by algebraic spaces, flat, and locally of finite presentation. Then

\[ p : \mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y}) \to \mathcal{Y} \]

is formally smooth on objects.

Proof. We have to show the following: Given

  1. an object $(U, Z, y, x, \alpha )$ of $\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$ over an affine scheme $U$,

  2. a first order thickening $U \subset U'$, and

  3. an object $y'$ of $\mathcal{Y}$ over $U'$ such that $y'|_ U = y$,

then there exists an object $(U', Z', y', x', \alpha ')$ of $\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$ over $U'$ with $Z = U \times _{U'} Z'$, with $x = x'|_ Z$, and with $\alpha = \alpha '|_ U$. Namely, the last two equalities will take care of the commutativity of (96.6.0.1).

Consider the morphism $x_\alpha : Z \to X_ y$ constructed in Equation (96.15.0.1). Denote similarly $X'_{y'}$ the algebraic space over $U'$ representing the $2$-fibre product $(\mathit{Sch}/U')_{fppf} \times _{y', \mathcal{Y}, F} \mathcal{X}$. By assumption the morphism $X'_{y'} \to U'$ is flat (and locally of finite presentation). As $y'|_ U = y$ we see that $X_ y = U \times _{U'} X'_{y'}$. Hence we may apply Lemma 96.15.2 to find $Z' \to U'$ finite locally free of degree $d$ with $Z = U \times _{U'} Z'$ and with $Z' \to X'_{y'}$ extending $x_\alpha $. By construction the morphism $Z' \to X'_{y'}$ corresponds to a pair $(x', \alpha ')$. It is clear that $(U', Z', y', x', \alpha ')$ is an object of $\mathcal{H}_ d(\mathcal{X}/\mathcal{Y})$ over $U'$ with $Z = U \times _{U'} Z'$, with $x = x'|_ Z$, and with $\alpha = \alpha '|_ U$. As we've seen in Lemma 96.15.1 that $\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y}) \subset \mathcal{H}_ d(\mathcal{X}/\mathcal{Y})$ is an “open substack” it follows that $(U', Z', y', x', \alpha ')$ is an object of $\mathcal{H}_{d, lci}(\mathcal{X}/\mathcal{Y})$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06D9. Beware of the difference between the letter 'O' and the digit '0'.