The Stacks project

Lemma 99.16.1. Let $\mathcal{P}$ be a property of morphisms of algebraic spaces which is smooth local on the source-and-target. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. Consider commutative diagrams

\[ \xymatrix{ U \ar[d]_ a \ar[r]_ h & V \ar[d]^ b \\ \mathcal{X} \ar[r]^ f & \mathcal{Y} } \]

where $U$ and $V$ are algebraic spaces and the vertical arrows are smooth. The following are equivalent

  1. for any diagram as above such that in addition $U \to \mathcal{X} \times _\mathcal {Y} V$ is smooth the morphism $h$ has property $\mathcal{P}$, and

  2. for some diagram as above with $a : U \to \mathcal{X}$ surjective the morphism $h$ has property $\mathcal{P}$.

If $\mathcal{X}$ and $\mathcal{Y}$ are representable by algebraic spaces, then this is also equivalent to $f$ (as a morphism of algebraic spaces) having property $\mathcal{P}$. If $\mathcal{P}$ is also preserved under any base change, and fppf local on the base, then for morphisms $f$ which are representable by algebraic spaces this is also equivalent to $f$ having property $\mathcal{P}$ in the sense of Properties of Stacks, Section 98.3.

Proof. Let us prove the implication (1) $\Rightarrow $ (2). Pick an algebraic space $V$ and a surjective and smooth morphism $V \to \mathcal{Y}$. Pick an algebraic space $U$ and a surjective and smooth morphism $U \to \mathcal{X} \times _\mathcal {Y} V$. Note that $U \to \mathcal{X}$ is surjective and smooth as well, as a composition of the base change $\mathcal{X} \times _\mathcal {Y} V \to \mathcal{X}$ and the chosen map $U \to \mathcal{X} \times _\mathcal {Y} V$. Hence we obtain a diagram as in (1). Thus if (1) holds, then $h : U \to V$ has property $\mathcal{P}$, which means that (2) holds as $U \to \mathcal{X}$ is surjective.

Conversely, assume (2) holds and let $U, V, a, b, h$ be as in (2). Next, let $U', V', a', b', h'$ be any diagram as in (1). Picture

\[ \xymatrix{ U \ar[d] \ar[r]_ h & V \ar[d] \\ \mathcal{X} \ar[r]^ f & \mathcal{Y} } \quad \quad \xymatrix{ U' \ar[d] \ar[r]_{h'} & V' \ar[d] \\ \mathcal{X} \ar[r]^ f & \mathcal{Y} } \]

To show that (2) implies (1) we have to prove that $h'$ has $\mathcal{P}$. To do this consider the commutative diagram

\[ \xymatrix{ U \ar[dd]^ h & U \times _\mathcal {X} U' \ar[d] \ar[l] \ar@/^6ex/[dd]^{(h, h')} \ar[r] & U' \ar[dd]^{h'} \\ & U \times _\mathcal {Y} V' \ar[lu] \ar[d] & \\ V & V \times _\mathcal {Y} V' \ar[l] \ar[r] & V' } \]

of algebraic spaces. Note that the horizontal arrows are smooth as base changes of the smooth morphisms $V \to \mathcal{Y}$, $V' \to \mathcal{Y}$, $U \to \mathcal{X}$, and $U' \to \mathcal{X}$. Note that

\[ \xymatrix{ U \times _\mathcal {X} U' \ar[d] \ar[r] & U' \ar[d] \\ U \times _\mathcal {Y} V' \ar[r] & \mathcal{X} \times _\mathcal {Y} V' } \]

is cartesian, hence the left vertical arrow is smooth as $U', V', a', b', h'$ is as in (1). Since $\mathcal{P}$ is smooth local on the target by Descent on Spaces, Lemma 72.19.2 part (2) we see that the base change $U \times _\mathcal {Y} V' \to V \times _\mathcal {Y} V'$ has $\mathcal{P}$. Since $\mathcal{P}$ is smooth local on the source by Descent on Spaces, Lemma 72.19.2 part (1) we can precompose by the smooth morphism $U \times _\mathcal {X} U' \to U \times _\mathcal {Y} V'$ and conclude $(h, h')$ has $\mathcal{P}$. Since $V \times _\mathcal {Y} V' \to V'$ is smooth we conclude $U \times _\mathcal {X} U' \to V'$ has $\mathcal{P}$ by Descent on Spaces, Lemma 72.19.2 part (3). Finally, since $U \times _ X U' \to U'$ is surjective and smooth and $\mathcal{P}$ is smooth local on the source (same lemma) we conclude that $h'$ has $\mathcal{P}$. This finishes the proof of the equivalence of (1) and (2).

If $\mathcal{X}$ and $\mathcal{Y}$ are representable, then Descent on Spaces, Lemma 72.19.3 applies which shows that (1) and (2) are equivalent to $f$ having $\mathcal{P}$.

Finally, suppose $f$ is representable, and $U, V, a, b, h$ are as in part (2) of the lemma, and that $\mathcal{P}$ is preserved under arbitrary base change. We have to show that for any scheme $Z$ and morphism $Z \to \mathcal{X}$ the base change $Z \times _\mathcal {Y} \mathcal{X} \to Z$ has property $\mathcal{P}$. Consider the diagram

\[ \xymatrix{ Z \times _\mathcal {Y} U \ar[d] \ar[r] & Z \times _\mathcal {Y} V \ar[d] \\ Z \times _\mathcal {Y} \mathcal{X} \ar[r] & Z } \]

Note that the top horizontal arrow is a base change of $h$ and hence has property $\mathcal{P}$. The left vertical arrow is smooth and surjective and the right vertical arrow is smooth. Thus Descent on Spaces, Lemma 72.19.3 kicks in and shows that $Z \times _\mathcal {Y} \mathcal{X} \to Z$ has property $\mathcal{P}$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06FM. Beware of the difference between the letter 'O' and the digit '0'.