Let $F: \mathcal{C} \to \textit{Sets}$ be a functor. We can think of a set as a discrete category, i.e., as a groupoid with only identity morphisms. Then the construction (9) associates to $F$ a category cofibered in sets. This defines a fully faithful embedding of the category of functors $\mathcal{C} \to \textit{Sets}$ to the category of categories cofibered in groupoids over $\mathcal{C}$. We identify the category of functors with its image under this embedding. Hence if $F : \mathcal{C} \to \textit{Sets}$ is a functor, we denote the associated category cofibered in sets also by $F$; and if $\varphi : F \to G$ is a morphism of functors, we denote still by $\varphi $ the corresponding morphism of categories cofibered in sets, and vice-versa. See Categories, Section 4.38.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)