Lemma 15.45.7. Given any local ring $R$ we have $\dim (R) = \dim (R^ h) = \dim (R^{sh})$.

**Proof.**
Since $R \to R^{sh}$ is faithfully flat (Lemma 15.45.1) we see that $\dim (R^{sh}) \geq \dim (R)$ by going down, see Algebra, Lemma 10.112.1. For the converse, we write $R^{sh} = \mathop{\mathrm{colim}}\nolimits R_ i$ as a directed colimit of local rings $R_ i$ each of which is a localization of an étale $R$-algebra. Now if $\mathfrak q_0 \subset \mathfrak q_1 \subset \ldots \subset \mathfrak q_ n$ is a chain of prime ideals in $R^{sh}$, then for some sufficiently large $i$ the sequence

is a chain of primes in $R_ i$. Thus we see that $\dim (R^{sh}) \leq \sup _ i \dim (R_ i)$. But by the result of Lemma 15.44.2 we have $\dim (R_ i) = \dim (R)$ for each $i$ and we win. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)