Lemma 8.11.5. Let $\mathcal{C}$ be a site. Let
be a $2$-fibre product of stacks in groupoids over $\mathcal{C}$. If $\mathcal{X}$ is a gerbe over $\mathcal{Y}$, then $\mathcal{X}'$ is a gerbe over $\mathcal{Y}'$.
Lemma 8.11.5. Let $\mathcal{C}$ be a site. Let
be a $2$-fibre product of stacks in groupoids over $\mathcal{C}$. If $\mathcal{X}$ is a gerbe over $\mathcal{Y}$, then $\mathcal{X}'$ is a gerbe over $\mathcal{Y}'$.
Proof. By the uniqueness property of a $2$-fibre product may assume that $\mathcal{X}' = \mathcal{Y}' \times _\mathcal {Y} \mathcal{X}$ as in Categories, Lemma 4.32.3. Let us prove properties (2)(a) and (2)(b) of Lemma 8.11.3 for $\mathcal{Y}' \times _\mathcal {Y} \mathcal{X} \to \mathcal{Y}'$.
Let $y'$ be an object of $\mathcal{Y}'$ lying over the object $U$ of $\mathcal{C}$. By assumption there exists a covering $\{ U_ i \to U\} $ of $U$ and objects $x_ i \in \mathcal{X}_{U_ i}$ with isomorphisms $\alpha _ i : G(y')|_{U_ i} \to F(x_ i)$. Then $(U_ i, y'|_{U_ i}, x_ i, \alpha _ i)$ is an object of $\mathcal{Y}' \times _\mathcal {Y} \mathcal{X}$ over $U_ i$ whose image in $\mathcal{Y}'$ is $y'|_{U_ i}$. Thus (2)(a) holds.
Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, let $x'_1, x'_2$ be objects of $\mathcal{Y}' \times _\mathcal {Y} \mathcal{X}$ over $U$, and let $b' : F'(x'_1) \to F'(x'_2)$ be a morphism in $\mathcal{Y}'_ U$. Write $x'_ i = (U, y'_ i, x_ i, \alpha _ i)$. Note that $F'(x'_ i) = x_ i$ and $G'(x'_ i) = y'_ i$. By assumption there exists a covering $\{ U_ i \to U\} $ in $\mathcal{C}$ and morphisms $a_ i : x_1|_{U_ i} \to x_2|_{U_ i}$ in $\mathcal{X}_{U_ i}$ with $F(a_ i) = G(b')|_{U_ i}$. Then $(b'|_{U_ i}, a_ i)$ is a morphism $x'_1|_{U_ i} \to x'_2|_{U_ i}$ as required in (2)(b). $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: