Lemma 8.11.5. Let $\mathcal{C}$ be a site. Let

$\xymatrix{ \mathcal{X}' \ar[r]_{G'} \ar[d]_{F'} & \mathcal{X} \ar[d]^ F \\ \mathcal{Y}' \ar[r]^ G & \mathcal{Y} }$

be a $2$-fibre product of stacks in groupoids over $\mathcal{C}$. If $\mathcal{X}$ is a gerbe over $\mathcal{Y}$, then $\mathcal{X}'$ is a gerbe over $\mathcal{Y}'$.

Proof. By the uniqueness property of a $2$-fibre product may assume that $\mathcal{X}' = \mathcal{Y}' \times _\mathcal {Y} \mathcal{X}$ as in Categories, Lemma 4.32.3. Let us prove properties (2)(a) and (2)(b) of Lemma 8.11.3 for $\mathcal{Y}' \times _\mathcal {Y} \mathcal{X} \to \mathcal{Y}'$.

Let $y'$ be an object of $\mathcal{Y}'$ lying over the object $U$ of $\mathcal{C}$. By assumption there exists a covering $\{ U_ i \to U\}$ of $U$ and objects $x_ i \in \mathcal{X}_{U_ i}$ with isomorphisms $\alpha _ i : G(y')|_{U_ i} \to F(x_ i)$. Then $(U_ i, y'|_{U_ i}, x_ i, \alpha _ i)$ is an object of $\mathcal{Y}' \times _\mathcal {Y} \mathcal{X}$ over $U_ i$ whose image in $\mathcal{Y}'$ is $y'|_{U_ i}$. Thus (2)(a) holds.

Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, let $x'_1, x'_2$ be objects of $\mathcal{Y}' \times _\mathcal {Y} \mathcal{X}$ over $U$, and let $b' : F'(x'_1) \to F'(x'_2)$ be a morphism in $\mathcal{Y}'_ U$. Write $x'_ i = (U, y'_ i, x_ i, \alpha _ i)$. Note that $F'(x'_ i) = x_ i$ and $G'(x'_ i) = y'_ i$. By assumption there exists a covering $\{ U_ i \to U\}$ in $\mathcal{C}$ and morphisms $a_ i : x_1|_{U_ i} \to x_2|_{U_ i}$ in $\mathcal{X}_{U_ i}$ with $F(a_ i) = G(b')|_{U_ i}$. Then $(b'|_{U_ i}, a_ i)$ is a morphism $x'_1|_{U_ i} \to x'_2|_{U_ i}$ as required in (2)(b). $\square$

There are also:

• 2 comment(s) on Section 8.11: Gerbes

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06P3. Beware of the difference between the letter 'O' and the digit '0'.