\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

The Stacks project

Lemma 70.6.1. Let $S$ be a scheme. Let $B$ be an algebraic space over $S$. Let $G$ be a group algebraic space over $B$. Then $G \to B$ is separated (resp. quasi-separated, resp. locally separated) if and only if the identity morphism $e : B \to G$ is a closed immersion (resp. quasi-compact, resp. an immersion).

Proof. We recall that by Morphisms of Spaces, Lemma 59.4.7 we have that $e$ is a closed immersion (resp. quasi-compact, resp. an immersion) if $G \to B$ is separated (resp. quasi-separated, resp. locally separated). For the converse, consider the diagram

\[ \xymatrix{ G \ar[r]_-{\Delta _{G/B}} \ar[d] & G \times _ B G \ar[d]^{(g, g') \mapsto m(i(g), g')} \\ B \ar[r]^ e & G } \]

It is an exercise in the functorial point of view in algebraic geometry to show that this diagram is cartesian. In other words, we see that $\Delta _{G/B}$ is a base change of $e$. Hence if $e$ is a closed immersion (resp. quasi-compact, resp. an immersion) so is $\Delta _{G/B}$, see Spaces, Lemma 57.12.3 (resp. Morphisms of Spaces, Lemma 59.8.4, resp. Spaces, Lemma 57.12.3). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06P6. Beware of the difference between the letter 'O' and the digit '0'.