The Stacks project

Lemma 101.28.2. Let $\mathcal{X}$ be an algebraic stack. If $\mathcal{X}$ is a gerbe, then the sheafification of the presheaf

\[ (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}, \quad U \mapsto \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_ U)/\! \! \cong \]

is an algebraic space and $\mathcal{X}$ is a gerbe over it.

Proof. (In this proof the abuse of language introduced in Section 101.2 really pays off.) Choose a morphism $\pi : \mathcal{X} \to X$ where $X$ is an algebraic space which turns $\mathcal{X}$ into a gerbe over $X$. It suffices to prove that $X$ is the sheafification of the presheaf $\mathcal{F}$ displayed in the lemma. It is clear that there is a map $c : \mathcal{F} \to X$. We will use Stacks, Lemma 8.11.3 properties (2)(a) and (2)(b) to see that the map $c^\# : \mathcal{F}^\# \to X$ is surjective and injective, hence an isomorphism, see Sites, Lemma 7.11.2. Surjective: Let $T$ be a scheme and let $f : T \to X$. By property (2)(a) there exists an fppf covering $\{ h_ i : T_ i \to T\} $ and morphisms $x_ i : T_ i \to \mathcal{X}$ such that $f \circ h_ i$ corresponds to $\pi \circ x_ i$. Hence we see that $f|_{T_ i}$ is in the image of $c$. Injective: Let $T$ be a scheme and let $x, y : T \to \mathcal{X}$ be morphisms such that $c \circ x = c \circ y$. By (2)(b) we can find a covering $\{ T_ i \to T\} $ and morphisms $x|_{T_ i} \to y|_{T_ i}$ in the fibre category $\mathcal{X}_{T_ i}$. Hence the restrictions $x|_{T_ i}, y|_{T_ i}$ are equal in $\mathcal{F}(T_ i)$. This proves that $x, y$ give the same section of $\mathcal{F}^\# $ over $T$ as desired. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 101.28: Gerbes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06QD. Beware of the difference between the letter 'O' and the digit '0'.