Lemma 96.4.4. Let f : \mathcal{X} \to \mathcal{Y} be a 1-morphism of categories fibred in groupoids over (\mathit{Sch}/S)_{fppf}. Let \tau \in \{ Zar, {\acute{e}tale}, smooth, syntomic, fppf\} . The functors {}_ pf and f^ p of (96.3.1.1) transform \tau sheaves into \tau sheaves and define a morphism of topoi f : \mathop{\mathit{Sh}}\nolimits (\mathcal{X}_\tau ) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{Y}_\tau ).
Proof. This follows immediately from Stacks, Lemma 8.10.3. \square
Comments (0)
There are also: