Definition 101.11.2. Let f : \mathcal{X} \to \mathcal{Y} be a morphism of algebraic stacks.
We say f is open if the map of topological spaces |\mathcal{X}| \to |\mathcal{Y}| is open.
We say f is universally open if for every morphism of algebraic stacks \mathcal{Z} \to \mathcal{Y} the morphism of topological spaces
|\mathcal{Z} \times _\mathcal {Y} \mathcal{X}| \to |\mathcal{Z}|is open, i.e., the base change \mathcal{Z} \times _\mathcal {Y} \mathcal{X} \to \mathcal{Z} is open.
Comments (0)