The Stacks project

Definition 101.12.2. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks.

  1. We say $f$ is submersive1 if the continuous map $|\mathcal{X}| \to |\mathcal{Y}|$ is submersive, see Topology, Definition 5.6.3.

  2. We say $f$ is universally submersive if for every morphism of algebraic stacks $\mathcal{Y}' \to \mathcal{Y}$ the base change $\mathcal{Y}' \times _\mathcal {Y} \mathcal{X} \to \mathcal{Y}'$ is submersive.

[1] This is very different from the notion of a submersion of differential manifolds.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06U6. Beware of the difference between the letter 'O' and the digit '0'.