Lemma 100.17.6. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. Let $W \to \mathcal{Y}$ be a surjective, flat, and locally of finite presentation where $W$ is an algebraic space. If the base change $W \times _\mathcal {Y} \mathcal{X} \to W$ is locally of finite type, then $f$ is locally of finite type.

**Proof.**
Choose an algebraic space $V$ and a surjective smooth morphism $V \to \mathcal{Y}$. Choose an algebraic space $U$ and a surjective smooth morphism $U \to V \times _\mathcal {Y} \mathcal{X}$. We have to show that $U \to V$ is locally of finite presentation. Now we base change everything by $W \to \mathcal{Y}$: Set $U' = W \times _\mathcal {Y} U$, $V' = W \times _\mathcal {Y} V$, $\mathcal{X}' = W \times _\mathcal {Y} \mathcal{X}$, and $\mathcal{Y}' = W \times _\mathcal {Y} \mathcal{Y} = W$. Then it is still true that $U' \to V' \times _{\mathcal{Y}'} \mathcal{X}'$ is smooth by base change. Hence by our definition of locally finite type morphisms of algebraic stacks and the assumption that $\mathcal{X}' \to \mathcal{Y}'$ is locally of finite type, we see that $U' \to V'$ is locally of finite type. Then, since $V' \to V$ is surjective, flat, and locally of finite presentation as a base change of $W \to \mathcal{Y}$ we see that $U \to V$ is locally of finite type by Descent on Spaces, Lemma 73.11.9 and we win.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)