The Stacks project

Lemma 101.23.8. Let $\mathcal{X} \to \mathcal{Y} \to \mathcal{Z}$ be morphisms of algebraic stacks. Assume that $\mathcal{X} \to \mathcal{Z}$ is locally quasi-finite and $\mathcal{Y} \to \mathcal{Z}$ is quasi-DM. Then $\mathcal{X} \to \mathcal{Y}$ is locally quasi-finite.

Proof. Write $\mathcal{X} \to \mathcal{Y}$ as the composition

\[ \mathcal{X} \longrightarrow \mathcal{X} \times _\mathcal {Z} \mathcal{Y} \longrightarrow \mathcal{Y} \]

The second arrow is locally quasi-finite as a base change of $\mathcal{X} \to \mathcal{Z}$, see Lemma 101.23.3. The first arrow is locally quasi-finite by Lemma 101.4.8 as $\mathcal{Y} \to \mathcal{Z}$ is quasi-DM. Hence $\mathcal{X} \to \mathcal{Y}$ is locally quasi-finite by Lemma 101.23.5. $\square$


Comments (0)

There are also:

  • 5 comment(s) on Section 101.23: Locally quasi-finite morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06UG. Beware of the difference between the letter 'O' and the digit '0'.