Lemma 46.5.2. Let $S$ be a scheme. Let $\mathcal{F}$ be an adequate $\mathcal{O}$-module on $(\mathit{Sch}/S)_\tau $. For any affine scheme $\mathop{\mathrm{Spec}}(A)$ over $S$ the functor $F_{\mathcal{F}, A}$ is adequate.

**Proof.**
Let $\{ \mathop{\mathrm{Spec}}(A_ i) \to S\} _{i \in I}$ be a $\tau $-covering such that $F_{\mathcal{F}, A_ i}$ is adequate for all $i \in I$. We can find a standard affine $\tau $-covering $\{ \mathop{\mathrm{Spec}}(A'_ j) \to \mathop{\mathrm{Spec}}(A)\} _{j = 1, \ldots , m}$ such that $\mathop{\mathrm{Spec}}(A'_ j) \to \mathop{\mathrm{Spec}}(A) \to S$ factors through $\mathop{\mathrm{Spec}}(A_{i(j)})$ for some $i(j) \in I$. Then we see that $F_{\mathcal{F}, A'_ j}$ is the restriction of $F_{\mathcal{F}, A_{i(j)}}$ to the category of $A'_ j$-algebras. Hence $F_{\mathcal{F}, A'_ j}$ is adequate by Lemma 46.3.17. By Lemma 46.3.19 the sequence $F_{\mathcal{F}, A'_ j}$ corresponds to an adequate “product” functor $F'$ over $A' = A'_1 \times \ldots \times A'_ m$. As $\mathcal{F}$ is a sheaf (for the Zariski topology) this product functor $F'$ is equal to $F_{\mathcal{F}, A'}$, i.e., is the restriction of $F$ to $A'$-algebras. Finally, $\{ \mathop{\mathrm{Spec}}(A') \to \mathop{\mathrm{Spec}}(A)\} $ is a $\tau $-covering. It follows from Lemma 46.3.20 that $F_{\mathcal{F}, A}$ is adequate.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)