Lemma 96.9.4. Let p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf} be a category fibred in groupoids. Let \tau \in \{ Zar, {\acute{e}tale}, smooth, syntomic, fppf\} . Let x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}) lying over U = p(x). The equivalence of Lemma 96.9.1 extends to an equivalence of ringed sites (\mathcal{X}_\tau /x, \mathcal{O}_\mathcal {X}|_ x) \to ((\mathit{Sch}/U)_\tau , \mathcal{O}).
Proof. This is immediate from the construction of the structure sheaves. \square
Comments (0)