Definition 95.7.1. Let $\mathcal{X}$ be a category fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$.

A

*presheaf of modules on $\mathcal{X}$*is a presheaf of $\mathcal{O}_\mathcal {X}$-modules. The category of presheaves of modules is denoted $\textit{PMod}(\mathcal{O}_\mathcal {X})$.We say a presheaf of modules $\mathcal{F}$ is an

*$\mathcal{O}_\mathcal {X}$-module*, or more precisely a*sheaf of $\mathcal{O}_\mathcal {X}$-modules*if $\mathcal{F}$ is an fppf sheaf. The category of $\mathcal{O}_\mathcal {X}$-modules is denoted $\textit{Mod}(\mathcal{O}_\mathcal {X})$.

## Comments (0)

There are also: