Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 96.19.6. Let $f : \mathcal{U} \to \mathcal{X}$ be a $1$-morphism of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $\tau \in \{ Zar, {\acute{e}tale}, smooth, syntomic, fppf\} $. Let

\[ \mathcal{F} \to \mathcal{G} \to \mathcal{H} \]

be a complex in $\textit{Ab}(\mathcal{X}_\tau )$. Assume that

  1. for every object $x$ of $\mathcal{X}$ there exists a covering $\{ x_ i \to x\} $ in $\mathcal{X}_\tau $ such that each $x_ i$ is isomorphic to $f(u_ i)$ for some object $u_ i$ of $\mathcal{U}$, and

  2. $f^{-1}\mathcal{F} \to f^{-1}\mathcal{G} \to f^{-1}\mathcal{H}$ is exact.

Then the sequence $\mathcal{F} \to \mathcal{G} \to \mathcal{H}$ is exact.

Proof. Let $x$ be an object of $\mathcal{X}$ lying over the scheme $T$. Consider the sequence $x^{-1}\mathcal{F} \to x^{-1}\mathcal{G} \to x^{-1}\mathcal{H}$ of abelian sheaves on $(\mathit{Sch}/T)_\tau $. It suffices to show this sequence is exact. By assumption there exists a $\tau $-covering $\{ T_ i \to T\} $ such that $x|_{T_ i}$ is isomorphic to $f(u_ i)$ for some object $u_ i$ of $\mathcal{U}$ over $T_ i$ and moreover the sequence $u_ i^{-1}f^{-1}\mathcal{F} \to u_ i^{-1}f^{-1}\mathcal{G} \to u_ i^{-1}f^{-1}\mathcal{H}$ of abelian sheaves on $(\mathit{Sch}/T_ i)_\tau $ is exact. Since $u_ i^{-1}f^{-1}\mathcal{F} = x^{-1}\mathcal{F}|_{(\mathit{Sch}/T_ i)_\tau }$ we conclude that the sequence $x^{-1}\mathcal{F} \to x^{-1}\mathcal{G} \to x^{-1}\mathcal{H}$ become exact after localizing at each of the members of a covering, hence the sequence is exact. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 96.19: The relative Čech complex

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.