Lemma 13.27.6. Let \mathcal{A} be an abelian category. Let A, B be objects of \mathcal{A}. Then \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {A}(B, A) is the group \mathop{\mathrm{Ext}}\nolimits _\mathcal {A}(B, A) constructed in Homology, Definition 12.6.2.
Proof. This is the case i = 1 of Lemma 13.27.5. \square
Comments (0)