Lemma 20.26.11. Let $(X, \mathcal{O}_ X)$ be a ringed space. For any complex $\mathcal{G}^\bullet$ there exists a $K$-flat complex $\mathcal{K}^\bullet$ and a quasi-isomorphism $\mathcal{K}^\bullet \to \mathcal{G}^\bullet$. Moreover, each $\mathcal{K}^ n$ is a flat $\mathcal{O}_ X$-module.

Proof. Choose a diagram as in Lemma 20.26.10. Each complex $\mathcal{K}_ n^\bullet$ is a bounded above complex of flat modules, see Modules, Lemma 17.16.5. Hence $\mathcal{K}_ n^\bullet$ is K-flat by Lemma 20.26.8. The induced map $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{G}^\bullet$ is a quasi-isomorphism by construction. Thus $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet$ is K-flat by Lemma 20.26.9. Property (3) of Lemma 20.26.10 shows that $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^ m$ is a direct sum of flat modules and hence flat which proves the final assertion. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).