Lemma 20.26.12. Let $(X, \mathcal{O}_ X)$ be a ringed space. For any complex $\mathcal{G}^\bullet $ there exists a $K$-flat complex $\mathcal{K}^\bullet $ whose terms are flat $\mathcal{O}_ X$-modules and a quasi-isomorphism $\mathcal{K}^\bullet \to \mathcal{G}^\bullet $ which is termwise surjective.
Proof. Choose a diagram as in Lemma 20.26.11. Each complex $\mathcal{K}_ n^\bullet $ is a bounded above complex of flat modules, see Modules, Lemma 17.17.5. Hence $\mathcal{K}_ n^\bullet $ is K-flat by Lemma 20.26.9. Thus $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet $ is K-flat by Lemma 20.26.10. The induced map $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{G}^\bullet $ is a quasi-isomorphism and termwise surjective by construction. Property (3) of Lemma 20.26.11 shows that $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^ m$ is a direct sum of flat modules and hence flat which proves the final assertion. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)