Lemma 46.4.5. Let A be a ring. Let F be a module-valued functor such that for any B \in \mathop{\mathrm{Ob}}\nolimits (\textit{Alg}_ A) the functor TF(B, -) on B-modules transforms a short exact sequence of B-modules into a right exact sequence. Then
TF(B, N_1 \oplus N_2) = TF(B, N_1) \oplus TF(B, N_2),
there is a second functorial B-module structure on TF(B, N) defined by setting x \cdot b = TF(B, b\cdot 1_ N)(x) for x \in TF(B, N) and b \in B,
the canonical map N \otimes _ B F(B) \to TF(B, N) of Lemma 46.4.3 is B-linear also with respect to the second B-module structure,
given a finitely presented B-module N there is a canonical isomorphism TF(B, B) \otimes _ B N \to TF(B, N) where the tensor product uses the second B-module structure on TF(B, B).
Comments (0)