Processing math: 100%

The Stacks project

Lemma 46.4.7. Let A be a ring. For F a module-valued functor on \textit{Alg}_ A say (*) holds if for all B \in \mathop{\mathrm{Ob}}\nolimits (\textit{Alg}_ A) the functor TF(B, -) on B-modules transforms a short exact sequence of B-modules into a right exact sequence. Let 0 \to F \to G \to H \to 0 be a short exact sequence of module-valued functors on \textit{Alg}_ A.

  1. If (*) holds for F, G then (*) holds for H.

  2. If (*) holds for F, H then (*) holds for G.

  3. If H' \to H is morphism of module-valued functors on \textit{Alg}_ A and (*) holds for F, G, H, and H', then (*) holds for G \times _ H H'.

Proof. Let B be given. Let 0 \to N_1 \to N_2 \to N_3 \to 0 be a short exact sequence of B-modules. Part (1) follows from a diagram chase in the diagram

\xymatrix{ 0 \ar[r] & TF(B, N_1) \ar[r] \ar[d] & TG(B, N_1) \ar[r] \ar[d] & TH(B, N_1) \ar[r] \ar[d] & 0 \\ 0 \ar[r] & TF(B, N_2) \ar[r] \ar[d] & TG(B, N_2) \ar[r] \ar[d] & TH(B, N_2) \ar[r] \ar[d] & 0 \\ 0 \ar[r] & TF(B, N_3) \ar[r] \ar[d] & TG(B, N_3) \ar[r] \ar[d] & TH(B, N_3) \ar[r] & 0 \\ & 0 & 0 }

with exact horizontal rows and exact columns involving TF and TG. To prove part (2) we do a diagram chase in the diagram

\xymatrix{ 0 \ar[r] & TF(B, N_1) \ar[r] \ar[d] & TG(B, N_1) \ar[r] \ar[d] & TH(B, N_1) \ar[r] \ar[d] & 0 \\ 0 \ar[r] & TF(B, N_2) \ar[r] \ar[d] & TG(B, N_2) \ar[r] \ar[d] & TH(B, N_2) \ar[r] \ar[d] & 0 \\ 0 \ar[r] & TF(B, N_3) \ar[r] \ar[d] & TG(B, N_3) \ar[r] & TH(B, N_3) \ar[r] \ar[d] & 0 \\ & 0 & & 0 }

with exact horizontal rows and exact columns involving TF and TH. Part (3) follows from part (2) as G \times _ H H' sits in the exact sequence 0 \to F \to G \times _ H H' \to H' \to 0. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.