Definition 105.4.3. We say a morphism $S \to \mathcal{M}_{1, 1}$ is smooth if for every morphism $S' \to \mathcal{M}_{1, 1}$ the projection morphism
\[ S \times _{\mathcal{M}_{1, 1}} S' \longrightarrow S' \]
is smooth.
Definition 105.4.3. We say a morphism $S \to \mathcal{M}_{1, 1}$ is smooth if for every morphism $S' \to \mathcal{M}_{1, 1}$ the projection morphism
is smooth.
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)