Lemma 11.7.4. Let $A$ be a finite central skew field over $k$. Then every maximal subfield $K \subset A$ satisfies $[A : k] = [K : k]^2$.
The dimension of a finite central skew field is the square of the dimension of any maximal subfield.
Proof.
Special case of Lemma 11.7.3.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #3030 by Brian Lawrence on