The Stacks project

Theorem 11.8.2. Let $A$ be a finite central simple $k$-algebra. Let $k'/k$ be a finite field extension. The following are equivalent

  1. $k'$ splits $A$, and

  2. there exists a finite central simple algebra $B$ similar to $A$ such that $k' \subset B$ and $[B : k] = [k' : k]^2$.

Proof. Assume (2). It suffices to show that $B \otimes _ k k'$ is a matrix algebra. We know that $B \otimes _ k B^{op} \cong \text{End}_ k(B)$. Since $k'$ is the centralizer of $k'$ in $B^{op}$ by Lemma 11.7.3 we see that $B \otimes _ k k'$ is the centralizer of $k \otimes k'$ in $B \otimes _ k B^{op} = \text{End}_ k(B)$. Of course this centralizer is just $\text{End}_{k'}(B)$ where we view $B$ as a $k'$ vector space via the embedding $k' \to B$. Thus the result.

Assume (1). This means that we have an isomorphism $A \otimes _ k k' \cong \text{End}_{k'}(V)$ for some $k'$-vector space $V$. Let $B$ be the commutant of $A$ in $\text{End}_ k(V)$. Note that $k'$ sits in $B$. By Lemma 11.7.2 the classes of $A$ and $B$ add up to zero in $\text{Br}(k)$. From the dimension formula in Theorem 11.7.1 we see that

\[ [B : k] [A : k] = \dim _ k(V)^2 = [k' : k]^2 \dim _{k'}(V)^2 = [k' : k]^2 [A : k]. \]

Hence $[B : k] = [k' : k]^2$. Thus we have proved the result for the opposite to the Brauer class of $A$. However, $k'$ splits the Brauer class of $A$ if and only if it splits the Brauer class of the opposite algebra, so we win anyway. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 11.8: Splitting fields

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 074Z. Beware of the difference between the letter 'O' and the digit '0'.