Proposition 11.8.5. Consider a finite central skew field $K$ over $k$. There exists a maximal subfield $k \subset k' \subset K$ which is separable over $k$. In particular, every Brauer class has a finite separable spitting field.
Proof. Since every Brauer class is represented by a finite central skew field over $k$, we see that the second statement follows from the first by Lemma 11.8.3.
To prove the first statement, suppose that we are given a separable subfield $k' \subset K$. Then the centralizer $K'$ of $k'$ in $K$ has center $k'$, and the problem reduces to finding a maximal subfield of $K'$ separable over $k'$. Thus it suffices to prove, if $k \not= K$, that we can find an element $x \in K$, $x \not\in k$ which is separable over $k$. This statement is clear in characteristic zero. Hence we may assume that $k$ has characteristic $p > 0$. If the ground field $k$ is finite then, the result is clear as well (because extensions of finite fields are always separable). Thus we may assume that $k$ is an infinite field of positive characteristic.
To get a contradiction assume no element of $K$ is separable over $k$. By the discussion in Fields, Section 9.28 this means the minimal polynomial of any $x \in K$ is of the form $T^ q - a$ where $q$ is a power of $p$ and $a \in k$. Since it is clear that every element of $K$ has a minimal polynomial of degree $\leq \dim _ k(K)$ we conclude that there exists a fixed $p$-power $q$ such that $x^ q \in k$ for all $x \in K$.
Consider the map
and write it out in terms of a $k$-basis $\{ a_1, \ldots , a_ n\} $ of $K$ with $a_1 = 1$. So
Since multiplication on $K$ is $k$-bilinear we see that each $f_ i$ is a polynomial in $x_1, \ldots , x_ n$ (details omitted). The choice of $q$ above and the fact that $k$ is infinite shows that $f_ i$ is identically zero for $i \geq 2$. Hence we see that it remains zero on extending $k$ to its algebraic closure $\overline{k}$. But the algebra $K \otimes _ k \overline{k}$ is a matrix algebra (for example by Lemmas 11.4.9 and 11.5.3), which implies there are some elements whose $q$th power is not central (e.g., $e_{11}$). This is the desired contradiction. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #104 by zhang on
Comment #105 by Johan on
There are also: