The Stacks project

Lemma 35.12.4. Let $S$ be a scheme. Let $\tau \in \{ Zar, {\acute{e}tale}\} $. Let $\mathcal{G}$ be a sheaf of $\mathcal{O}$-modules on $(\mathit{Sch}/S)_{fppf}$ such that

  1. $\mathcal{G}|_{S_\tau }$ is quasi-coherent, and

  2. for every flat, locally finitely presented morphism $g : U \to S$ the canonical map $g_{\tau , small}^*(\mathcal{G}|_{S_\tau }) \to \mathcal{G}|_{U_\tau }$ is an isomorphism.

Then $H^ p(U, \mathcal{G}) = H^ p(U, \mathcal{G}|_{U_\tau })$ for every $U$ flat and locally of finite presentation over $S$.

Proof. Let $\mathcal{F}$ be the pullback of $\mathcal{G}|_{S_\tau }$ to the big fppf site $(\mathit{Sch}/S)_{fppf}$. Note that $\mathcal{F}$ is quasi-coherent. There is a canonical comparison map $\varphi : \mathcal{F} \to \mathcal{G}$ which by assumptions (1) and (2) induces an isomorphism $\mathcal{F}|_{U_\tau } \to \mathcal{G}|_{U_\tau }$ for all $g : U \to S$ flat and locally of finite presentation. Hence in the short exact sequences

\[ 0 \to \mathop{\mathrm{Ker}}(\varphi ) \to \mathcal{F} \to \mathop{\mathrm{Im}}(\varphi ) \to 0 \]

and

\[ 0 \to \mathop{\mathrm{Im}}(\varphi ) \to \mathcal{G} \to \mathop{\mathrm{Coker}}(\varphi ) \to 0 \]

the sheaves $\mathop{\mathrm{Ker}}(\varphi )$ and $\mathop{\mathrm{Coker}}(\varphi )$ are parasitic for the fppf topology. By Lemma 35.12.2 we conclude that $H^ p(U, \mathcal{F}) \to H^ p(U, \mathcal{G})$ is an isomorphism for $g : U \to S$ flat and locally of finite presentation. Since the result holds for $\mathcal{F}$ by Proposition 35.9.3 we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0756. Beware of the difference between the letter 'O' and the digit '0'.