Loading web-font TeX/Math/Italic

The Stacks project

Lemma 96.5.1. Let S be a scheme. Let

\xymatrix{ \mathcal{Y}' \times _\mathcal {Y} \mathcal{X} \ar[r]_{g'} \ar[d]_{f'} & \mathcal{X} \ar[d]^ f \\ \mathcal{Y}' \ar[r]^ g & \mathcal{Y} }

be a 2-cartesian diagram of categories fibred in groupoids over S. Then we have a canonical isomorphism

g^{-1}f_*\mathcal{F} \longrightarrow f'_*(g')^{-1}\mathcal{F}

functorial in the presheaf \mathcal{F} on \mathcal{X}.

Proof. Given an object y' of \mathcal{Y}' over V there is an equivalence

(\mathit{Sch}/V)_{fppf} \times _{g(y'), \mathcal{Y}} \mathcal{X} = (\mathit{Sch}/V)_{fppf} \times _{y', \mathcal{Y}'} (\mathcal{Y}' \times _\mathcal {Y} \mathcal{X})

Hence by (96.5.0.1) a bijection g^{-1}f_*\mathcal{F}(y') \to f'_*(g')^{-1}\mathcal{F}(y'). We omit the verification that this is compatible with restriction mappings. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.