Exercise 111.20.1. Let K'/K/k be field extensions with K' algebraic over K. Prove that \text{trdeg}_ k(K) = \text{trdeg}_ k(K'). (Hint: Show that if x_1, \ldots , x_ d \in K are algebraically independent over k and d < \text{trdeg}_ k(K') then k(x_1, \ldots , x_ d) \subset K cannot be algebraic.)
Comments (0)