Exercise 111.20.2. Let $k$ be a field. Let $K/k$ be a finitely generated extension of transcendence degree $d$. If $V, W \subset K$ are finite dimensional $k$-subvector spaces denote

$VW = \{ f \in K \mid f = \sum \nolimits _{i = 1, \ldots , n} v_ i w_ i \text{ for some }n\text{ and }v_ i \in V, w_ i \in W\}$

This is a finite dimensional $k$-subvector space. Set $V^2 = VV$, $V^3 = V V^2$, etc.

1. Show you can find $V \subset K$ and $\epsilon > 0$ such that $\dim V^ n \geq \epsilon n^ d$ for all $n \geq 1$.

2. Conversely, show that for every finite dimensional $V \subset K$ there exists a $C > 0$ such that $\dim V^ n \leq C n^ d$ for all $n \geq 1$. (One possible way to proceed: First do this for subvector spaces of $k[x_1, \ldots , x_ d]$. Then do this for subvector spaces of $k(x_1, \ldots , x_ d)$. Finally, if $K/k(x_1, \ldots , x_ d)$ is a finite extension choose a basis of $K$ over $k(x_1, \ldots , x_ d)$ and argue using expansion in terms of this basis.)

3. Conclude that you can redefine the transcendence degree in terms of growth of powers of finite dimensional subvector spaces of $K$.

This is related to Gelfand-Kirillov dimension of (noncommutative) algebras over $k$.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CVP. Beware of the difference between the letter 'O' and the digit '0'.