Loading web-font TeX/Main/Regular

The Stacks project

Lemma 39.15.7. Let (U, R, s, t, c) be a groupoid scheme over S. Assume that s, t are flat. There exists a cardinal \kappa such that every quasi-coherent module (\mathcal{F}, \alpha ) on (U, R, s, t, c) is the directed colimit of its \kappa -generated quasi-coherent submodules.

Proof. In the statement of the lemma and in this proof a submodule of a quasi-coherent module (\mathcal{F}, \alpha ) is a quasi-coherent submodule \mathcal{G} \subset \mathcal{F} such that \alpha (t^*\mathcal{G}) = s^*\mathcal{G} as subsheaves of s^*\mathcal{F}. This makes sense because since s, t are flat the pullbacks s^* and t^* are exact, i.e., preserve subsheaves. The proof will be a repeat of the proof of Properties, Lemma 28.23.3. We urge the reader to read that proof first.

Choose an affine open covering U = \bigcup _{i \in I} U_ i. For each pair i, j choose affine open coverings

U_ i \cap U_ j = \bigcup \nolimits _{k \in I_{ij}} U_{ijk} \quad \text{and}\quad s^{-1}(U_ i) \cap t^{-1}(U_ j) = \bigcup \nolimits _{k \in J_{ij}} W_{ijk}.

Write U_ i = \mathop{\mathrm{Spec}}(A_ i), U_{ijk} = \mathop{\mathrm{Spec}}(A_{ijk}), W_{ijk} = \mathop{\mathrm{Spec}}(B_{ijk}). Let \kappa be any infinite cardinal \geq than the cardinality of any of the sets I, I_{ij}, J_{ij}.

Let (\mathcal{F}, \alpha ) be a quasi-coherent module on (U, R, s, t, c). Set M_ i = \mathcal{F}(U_ i), M_{ijk} = \mathcal{F}(U_{ijk}). Note that

M_ i \otimes _{A_ i} A_{ijk} = M_{ijk} = M_ j \otimes _{A_ j} A_{ijk}

and that \alpha gives isomorphisms

\alpha |_{W_{ijk}} : M_ i \otimes _{A_ i, t} B_{ijk} \longrightarrow M_ j \otimes _{A_ j, s} B_{ijk}

see Schemes, Lemma 26.7.3. Using the axiom of choice we choose a map

(i, j, k, m) \mapsto S(i, j, k, m)

which associates to every i, j \in I, k \in I_{ij} or k \in J_{ij} and m \in M_ i a finite subset S(i, j, k, m) \subset M_ j such that we have

m \otimes 1 = \sum \nolimits _{m' \in S(i, j, k, m)} m' \otimes a_{m'} \quad \text{or}\quad \alpha (m \otimes 1) = \sum \nolimits _{m' \in S(i, j, k, m)} m' \otimes b_{m'}

in M_{ijk} for some a_{m'} \in A_{ijk} or b_{m'} \in B_{ijk}. Moreover, let's agree that S(i, i, k, m) = \{ m\} for all i, j = i, k, m when k \in I_{ij}. Fix such a collection S(i, j, k, m)

Given a family \mathcal{S} = (S_ i)_{i \in I} of subsets S_ i \subset M_ i of cardinality at most \kappa we set \mathcal{S}' = (S'_ i) where

S'_ j = \bigcup \nolimits _{(i, j, k, m)\text{ such that }m \in S_ i} S(i, j, k, m)

Note that S_ i \subset S'_ i. Note that S'_ i has cardinality at most \kappa because it is a union over a set of cardinality at most \kappa of finite sets. Set \mathcal{S}^{(0)} = \mathcal{S}, \mathcal{S}^{(1)} = \mathcal{S}' and by induction \mathcal{S}^{(n + 1)} = (\mathcal{S}^{(n)})'. Then set \mathcal{S}^{(\infty )} = \bigcup _{n \geq 0} \mathcal{S}^{(n)}. Writing \mathcal{S}^{(\infty )} = (S^{(\infty )}_ i) we see that for any element m \in S^{(\infty )}_ i the image of m in M_{ijk} can be written as a finite sum \sum m' \otimes a_{m'} with m' \in S_ j^{(\infty )}. In this way we see that setting

N_ i = A_ i\text{-submodule of }M_ i\text{ generated by }S^{(\infty )}_ i

we have

N_ i \otimes _{A_ i} A_{ijk} = N_ j \otimes _{A_ j} A_{ijk} \quad \text{and}\quad \alpha (N_ i \otimes _{A_ i, t} B_{ijk}) = N_ j \otimes _{A_ j, s} B_{ijk}

as submodules of M_{ijk} or M_ j \otimes _{A_ j, s} B_{ijk}. Thus there exists a quasi-coherent submodule \mathcal{G} \subset \mathcal{F} with \mathcal{G}(U_ i) = N_ i such that \alpha (t^*\mathcal{G}) = s^*\mathcal{G} as submodules of s^*\mathcal{F}. In other words, (\mathcal{G}, \alpha |_{t^*\mathcal{G}}) is a submodule of (\mathcal{F}, \alpha ). Moreover, by construction \mathcal{G} is \kappa -generated.

Let \{ (\mathcal{G}_ t, \alpha _ t)\} _{t \in T} be the set of \kappa -generated quasi-coherent submodules of (\mathcal{F}, \alpha ). If t, t' \in T then \mathcal{G}_ t + \mathcal{G}_{t'} is also a \kappa -generated quasi-coherent submodule as it is the image of the map \mathcal{G}_ t \oplus \mathcal{G}_{t'} \to \mathcal{F}. Hence the system (ordered by inclusion) is directed. The arguments above show that every section of \mathcal{F} over U_ i is in one of the \mathcal{G}_ t (because we can start with \mathcal{S} such that the given section is an element of S_ i). Hence \mathop{\mathrm{colim}}\nolimits _ t \mathcal{G}_ t \to \mathcal{F} is both injective and surjective as desired. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.