Lemma 26.7.3. Let $(X, \mathcal{O}_ X) = (\mathop{\mathrm{Spec}}(S), \mathcal{O}_{\mathop{\mathrm{Spec}}(S)})$, $(Y, \mathcal{O}_ Y) = (\mathop{\mathrm{Spec}}(R), \mathcal{O}_{\mathop{\mathrm{Spec}}(R)})$ be affine schemes. Let $\psi : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of affine schemes, corresponding to the ring map $\psi ^\sharp : R \to S$ (see Lemma 26.6.5).

1. We have $\psi ^* \widetilde M = \widetilde{S \otimes _ R M}$ functorially in the $R$-module $M$.

2. We have $\psi _* \widetilde N = \widetilde{N_ R}$ functorially in the $S$-module $N$.

Proof. The first assertion follows from the identification in Lemma 26.7.1 and the result of Modules, Lemma 17.10.7. The second assertion follows from the fact that $\psi ^{-1}(D(f)) = D(\psi ^\sharp (f))$ and hence

$\psi _* \widetilde N(D(f)) = \widetilde N(D(\psi ^\sharp (f))) = N_{\psi ^\sharp (f)} = (N_ R)_ f = \widetilde{N_ R}(D(f))$

as desired. $\square$

There are also:

• 5 comment(s) on Section 26.7: Quasi-coherent sheaves on affines

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).