Lemma 26.7.3. Let (X, \mathcal{O}_ X) = (\mathop{\mathrm{Spec}}(S), \mathcal{O}_{\mathop{\mathrm{Spec}}(S)}), (Y, \mathcal{O}_ Y) = (\mathop{\mathrm{Spec}}(R), \mathcal{O}_{\mathop{\mathrm{Spec}}(R)}) be affine schemes. Let \psi : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y) be a morphism of affine schemes, corresponding to the ring map \psi ^\sharp : R \to S (see Lemma 26.6.5).
We have \psi ^* \widetilde M = \widetilde{S \otimes _ R M} functorially in the R-module M.
We have \psi _* \widetilde N = \widetilde{N_ R} functorially in the S-module N.
Comments (0)
There are also: