The Stacks project

Lemma 26.7.1. Let $(X, \mathcal{O}_ X) = (\mathop{\mathrm{Spec}}(R), \mathcal{O}_{\mathop{\mathrm{Spec}}(R)})$ be an affine scheme. Let $M$ be an $R$-module. There exists a canonical isomorphism between the sheaf $\widetilde M$ associated to the $R$-module $M$ (Definition 26.5.3) and the sheaf $\mathcal{F}_ M$ associated to the $R$-module $M$ (Modules, Definition 17.10.6). This isomorphism is functorial in $M$. In particular, the sheaves $\widetilde M$ are quasi-coherent. Moreover, they are characterized by the following mapping property

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\widetilde M, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _ R(M, \Gamma (X, \mathcal{F})) \]

for any sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$. Here a map $\alpha : \widetilde M \to \mathcal{F}$ corresponds to its effect on global sections.

Proof. By Modules, Lemma 17.10.5 we have a morphism $\mathcal{F}_ M \to \widetilde M$ corresponding to the map $M \to \Gamma (X, \widetilde M) = M$. Let $x \in X$ correspond to the prime $\mathfrak p \subset R$. The induced map on stalks are the maps $\mathcal{O}_{X, x} \otimes _ R M \to M_{\mathfrak p}$ which are isomorphisms because $R_{\mathfrak p} \otimes _ R M = M_{\mathfrak p}$. Hence the map $\mathcal{F}_ M \to \widetilde M$ is an isomorphism. The mapping property follows from the mapping property of the sheaves $\mathcal{F}_ M$. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 26.7: Quasi-coherent sheaves on affines

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01I7. Beware of the difference between the letter 'O' and the digit '0'.